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Abstract—The recent availability of smart network interface
cards (smart NICs) and Data Processing units (DPUs) providing
hardware-accelerated networking and computing functionalities
is opening the way towards new applications and use cases beyond
the traditional data center scenarios.

In this paper, three different use cases for edge scenarios that
leverage on the innovative programmability enabled by DPUs are
presented and discussed. The first use case focuses on a pervasive
monitoring infrastructure to support accurate and decentralized
network awareness for low-latency 5G services. The second one
focuses on the implementation of power-efficient edge-to-cloud
continuum. The third use case refers to effective network security
functions at the DPU.

Index Terms—P4, smart NIC, in-network functions, DPU,
telemetry, security, programmability, programmable data plane.

I. INTRODUCTION

Software Defined Networking (SDN) and data plane pro-
grammability, originally designed for data center applications,
are becoming ubiquitous, also targeting edge computing sce-
narios [1]. So far, data plane programmability (e.g., using
the P4 technology [2]) has been mainly implemented in
bare metal and software switches [3]. However, the recent
evolution of network interface cards (NIC) towards smart
NICs and Data Processing Units (DPU, e.g. [4]) is driving
the introduction of novel programmable network functions
accelerated in hardware also within edge computing nodes.
This opens the way to innovative solutions aiming at efficiently
support innovative low-latency 5G services as well as provid-
ing accurate network awareness and security capabilities to
computer and orchestration systems at the edge [5].

In this paper, we first provide an overview of the innovative
capabilities enabled by DPUs. Then, we present three different
use cases for edge scenarios that leverage on the innovative
programmability enabled by DPUs.

The first application consists in an innovative pervasive
monitoring infrastructure enabling accurate network perfor-
mance monitoring across the entire end-to-end network. The
monitoring infrastructure relies on (i) telemetry extended
up to the user equipment, (ii) telemetry enhanced as in-
network communication channel, (iii) decentralized telemetry
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among network and edge devices and modules, and (iv) novel
hardware-accelerated telemetry collector.

The second application consists in a power-efficient scenario
of smart edge nodes able to aggregate computing, networking
and optical transmission technology in a single energy-efficient
element at the edge.

The third application consists of fast HW-accelerated cyber-
security operations relying on machine learning processing
directly performed within the DPU.

II. PREVIOUS WORKS ON SMART NIC TECHNOLOGY

The introduction of smart NIC has been received with a
large interest in the networking community, thanks to the
flexibility and the novel degree of programmability that such
devices may bring to the network-computing node boundary.
The main research topics are related to application-aware
forwarding, security, converged nodes architectures, telemetry
and 5G functions.

The work in [6] analyzes the use of smart NIC for offloading
software packet processing in the kernel user space for dis-
tributed denial-of-service (DDoS) attack mitigation purposes.
The work in [7] proposes the adoption of smart NIC for
in-band Network telemetry to offload the chained latency
values processing at the INT sink node interface. The work
in [8] adopts a P4-enabled smart NIC attached to an optical
Bandwidth Variable Transponder to perform L2-L3 operation
(i.e., routing, forwarding) directly at the optical node. The
work in [9] introduces the smart NIC with local FPGA pro-
cessing for disaggregated hardware acceleration of Distributed
Units and Centralized Units in the 5G Radio Access Network
segment. The work in [10] introduces the serverless dynamic
latency-critical application migration at different edge nodes
coordinated by a joint packet-optical monitoring infrastruc-
ture combining packet-level INT and quality of transmission
telemetry of optical channels. Full migration and recovery of
specific processing-intensive VNF belonging to a chains of
Function-as-a-Service modules is enforced in less than 10ms.

To the best of our knowledge, only a single work analyzes
the performance of the recently released DPU platforms,
highlighting the benefits mainly in the field of network en-
cryption/decryption offloading, data compression and decom-
pression, and inter-process communication [11].



III. PROGRAMMABLE SMART NIC AND DATA PROCESSING
UNIT (DPU)

The different smart NIC and DPU offloading flavours are
shown in the examples of Fig. 1. Typical state-of-the-art
offloading of network functions are employed at the network
switch levels (i.e., at the programmable P4 switch/routers
nodes) and partial offloading is performed at the edge node.
While traditional NICs provide the low transmission proto-
col stack acceleration (e.g., Ethernet MAC) and smart NICs
provide some programmability at L3-L4 (e.g., exploiting P4).
Furthermore, advanced in-network functions are run inside the
edge node resorting to the computational capabilities of the
node, e.g., running a chain of VNF or containers, optionally
resorting to GPU resources to enforce AI-based problem
solutions. In this partial offloading, application packets are L1-
L2 processed at the NIC (including also L3 and L4 in case
of smart NICs) (1), passed to containers processing involving
CPU cores (2), optionally run inference and classification
resorting to GPU (3) and outcome post-processed again by
containers (4), and finally sent out to the next hop performing
L1-L2 encoding at the NIC (5). With the advent of DPU,
full offloading flavour may be envisioned. In this case, the
packet is received by the DPU providing all the programmable
ASIC-based acceleration features for packet dissection and L1-
L7 protocol dissection and processing. Moreover, in-network
functions are run inside the DPU itself resorting to local
processing capabilities, such as embedded CPU cores, optional
GPU availability and additional acceleration stages such as
Deep Packet Inspection filters (2). Finally, the processed
packet is re-transmitted exploiting the programmable pipeline
ASIC acceleration stages (3). In the case of full offload, the
edge node computational resources are not employed for in-
network packet processing, thus allowing improved processing
availability for tenants and application services.

IV. DPU-BASED PERVASIVE MONITORING
INFRASTRUCTURE

The use of programmable smart NIC has the potential of
supporting novel telemetry solutions specifically designed for
the edge continuum ecosystem. A pervasive monitoring infras-
tructure can be envisaged to provide distributed knowledge and
innovative decentralized decision-making solutions.

The infrastructure will leverage on the following innova-
tions, shown in Fig. 2: (1) telemetry extended up to the user
equipment, (2) telemetry enhanced as in-network communi-
cation channel, (3) decentralized telemetry among network
and edge devices and modules, (4) novel hardware-accelerated
telemetry collectors.

A. Telemetry at the user equipment

In-band Network Telemetry (INT, [12], [13]) whose pro-
cessing is performed in hardware by the DPU has the potential
to be extensively exploited not only to retrieve accurate
statistics/metadata from network nodes, but also enforced at
the user equipment or Internet-of-Things (IoT) terminal. This
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Fig. 1. Partial (a) and full (b) in-network function offload at the edge.

will enable the collection at the edge of accurate end-to-
edge information, such as the overall latency experienced
crossing both the wireless and the wired links. Furthermore,
additional information, traditionally not easily available at the
edge, will be retrieved. This includes (i) geo-localization data
of terminals and devices with low age of information (AoI),
(ii) user equipment performance such as system parameters,
queue occupation, CPU load, etc. with sub-second granularity,
(iii) quality parameters enabling AI-based investigation of
the overall level of customer satisfaction. These additional
parameters will enable not only detailed mobility monitoring
and improved cloud-edge or edge-edge steering policies, but
also forecasting and completely new MAS-based distributed
knowledge and decision-making approach at the edge. [14].

B. Telemetry as fast in-network communication channel

Hardware-accelerated telemetry has the potential to carry
not only monitoring parameters, but will also to support
fast in-network communication channels among network el-
ements or from the user equipment. For example, as soon
as performance degradation is detected (or forecasted) at the
user equipment, rather than waiting for monitored data to be
collected and processed by a central collector or at the edge,
the user equipment can directly request service adaptation
though specific fields included in an extended version of in-
band telemetry. Indeed, by leveraging on P4-based packet
manipulation, specifically added header flags/fields can be
directly filled in by the UE/terminal and consumed by in-
termediate switching elements or edge nodes [15]. This has
the potential to significantly reduce the reaction time by the
infrastructural elements as well as remarkably improved the
accuracy, since sporadic cases leading to false warning/alarm
conditions might be avoided/limited through such explicit in-
network communication channel.



Fig. 2. Next-generation in-network functions exploiting programmable data plane networking at the terminals.

C. Decentralized telemetry

Having the network react in real time to network problems
and changes is crucial to keeping the services provided by
the network uninterrupted, and to maintain an acceptable low
latency that falls within the terms of the Service-Level Agree-
ment offered by the provider. For this reason many systems
have been previously proposed for the monitoring of network
devices and for the collection and analysis of telemetry data
to diagnose abnormalities. One example is Pingmesh [16] that
works at the endpoints and aims to measure the latency across
all endpoints in a Data Center Network. However, Pingmesh
requires an Agent on every element which, according to [16],
has to be carefully implemented so that the CPU, memory, and
bandwidth overhead is small and affordable. Another example
of a system that collects and manages decentralized telemetry
data is NetView [17]. In this case, a Telemetry Antenna injects
a probe into the network. The probe is routed using source
routing to collect telemetry data along specific network routes,
and delivered to the Telemetry Analyzer. The above solutions
are relevant for metro-edge scenarios supporting low latency
applications, particularly if accelerated in hardware. Indeed,
data plane programmability and SmartNICs/DPUs open the
doors to hybrid solutions in which telemetry data is still
exported to telemetry collectors, while the DPU allow to
monitor the edge computing resources in a decentralized way.
For example, network performance indicators such as latency
and congestion can be measured and processed in real-time to
allow traffic to be re-routed at load-balancers. This operation
can be accelerated by the DPU itself without affecting the
CPU usage on the end server.

D. P4 telemetry collector

Traditional centralized collection of telemetry data offers
the benefits of global visibility and effective correlations,

potentially leading to optimal decisions. However, the im-
plementation of such collectors is extremely critical, due to
the amount of received data to be processed at wire speed
(see Fig. 3(a)). The preliminary work in [18] proposes a
two-stage telemetry collector where the first stage of data
collection, pre-processing, and aggregation is performed by
a programmable P4 switch/DPU which pre-processes the data
at wire-speed, also leveraging on its multiple interfaces and on
embedded stateful capabilities for preliminary correlations, as
shown in Fig. 3(b). This way, the amount of data received by
a telemetry server for subsequent data storage and elaboration
is significantly reduced. For example, for selected 5G(+)
services, min/avg/max latency statistics can be effectively
extracted from N post-card or in-band telemetry messages,
reducing by a factor of N the bandwidth at the telemetry server
without requiring significant P4 memory resources. Further-
more, significant benefits are expected at the server CPU. For
example, a preliminary test showed that a telemetry stream of
30k pps overwhelms a CPU to 100% load, while reducing it
of a factor of N=15 reduces the CPU to a value of 50%. This
solution will also provide an automated solution to assess the
level of aggregation per critical service accounting for service
requirements, rate, introduced latency in the delivery of data,
and usage of P4 resources.

V. CONVERGED PACKET, OPTICAL, AND EDGE COMPUTING
INFRASTRUCTURE

In the context of edge/metro networking, the introduction of
packet-optical white box, i.e. packet forwarding nodes (e.g.,
IP routers) equipped with coherent pluggable modules, is
driving the design and implementation of interoperable low-
cost converged packet-optical transport solutions effectively
capable of removing boundaries between different network
domains. For example, edge to cloud interconnection can



Fig. 3. (a) Traditional centralized telemetry collector on a server. (b) P4-based
HW-accelerated telemetry collector.

be implemented using a single router/gateway at the edge
performing packet forwarding as well as long-reach optical
transmission without requiring dedicated optical equipment
(e.g., transponders), as shown in Fig. 4(a).

DPUs have the potential to further improve the edge-to-
cloud continuum removing the barriers between computing
and networking resources, as shown in Fig. 4(b). The delivery
of 5G and beyond services is indeed driving Telco Central
Offices (CO) to host not only networking equipment such as
routers, but also edge computing resources. However, such
separation of networking and computing resources is expen-
sive (both in terms of CAPEX and OPEX), power hungry, and
not latency efficient. For example, multiple opto/electro/optical
conversions have to be experienced in the computing contin-
uum between (B)5G services and edge and cloud resources,
as highlighted by the red dots in Fig. 4(a).

DPUs provide a unified network-computing element provid-
ing both selected IP functionalities (e.g., Layer-2/3 and specific
MPLS features with native time synchronization protocols
such as IEEE-1588 v2 and Synchronous Ethernet) as well
as edge computing resources. Indeed, DPUs, as evolution of
smart network interface cards designed for intra-data centre
networking, provide advanced networking capabilities (e.g.,
up to 4 interfaces at up to 400Gb/s, advanced timing and
synchronization, HW encryption and embedded security fea-
tures, P4 programmability, etc.) as well as computing and
acceleration capabilities for selected ultra-low latency services
at the edge (e.g., up to 16 ARM CPUs, programmable accel-
eration for AI processing). The benefit of relying on a single
equipment for edge computing, networking, and long-reach
optical transmission is presented in Fig. 4(b). To this goal,
DPUs have to support optical coherent technologies for cloud-
edge interconnection. In particular, both point-to-point (e.g.,
ZR/ZR+) and point-to-multipoint (P2MP) pluggables (e.g.,
openXR) would be needed. The latter is of particular interest to
provide high-capacity connections towards the access and the
cloud while using a few physical interfaces, thus overcoming
the constraint on the limited number of physical interfaces

Fig. 4. (a) Traditional approach for routing and computing at the edge,
leveraging on different network and computing equipment; (b) converged
networking and computing scenario at the edge using DPU. Highlighted in
red the Optical-electro-optical conversions.

available in DPUs.
Pervasive telemetry may benefit from the collapse of both

packet and optical layer in a single converged DPU, enabling
augmented correlation between optical monitoring and data
analytics [19] and novel packet-based telemetry acceleration.

VI. DDOS DETECTION AND MITIGATION USE CASE

Cyber security is another relevant topic that is efficiently
addressed using in-network data plane programmability at the
DPU. So far, security feature extraction have been proposed to
be accelerated through P4-based switch programmability [20].
Focusing on smart NICs, in [21] a DDoS traffic classification
and filtering schema that identifies malicious packet signatures
based on Machine Learning algorithms and that generates
filtering rules is proposed. This schema is composed by four
steps: Signature Extraction (SE), Signature Classification (SC),
Signature Reduction (SR) and Anomaly Mitigation (AM). SE
and AM components are provided by a smart NIC in the
data plane using the eXpress Data Path (XDP) framework
for high-performance, whereas SC and SR components are
implemented in the control plane. SC normalizes and classi-
fies signatures through supervised Machine Learning models,
whereas SR reduces the number of malicious signatures to
accelerate the mitigation performance of the AM component.
This is done by resolving a multi-objective Pareto problem in
which the objective is to minimize:

• The number of malicious signatures (filtering rules)
• The percentage of benign traffic drops

A fast evolutionary approach based on Non-dominated Sorting
Genetic Algorithm II is adopted to iteratively try in each step
to further reduce the objectives, using as stopping condition a
time limit.
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Fig. 5. Converging the Signature Extraction, Signature Classification, Signa-
ture Reduction and Anomaly Mitigation steps in the DPU.

In our proposal, all the four steps are implemented inside a
DPU, leading to several advantages:

• Reduction of the overhead in terms of time and bandwidth
provided by the exchange of information between the
smart NIC and the control plane.

• The control plane is completely unaware about the DDoS
detection and mitigation and does not consume its re-
sources for this task.

• The DDoS detection and mitigation process is indepen-
dent from the connection between the DPU and the
control plane, and can be implemented in every point
of the net.

The Signature Extraction and Anomaly Mitigation steps can
be handled, respectively, by the DOCA Flow and DOCA Deep
Packet Inspection (through Suricata rules) features available
on the NVIDIA BlueField to take advantage of the hardware
accelerations. For the Signature Reduction step, the time limit
used as stopping criterion can be set as a trade-off between
the time constraints of the network and the performance
obtained in terms of number of filtered malicious packets
and percentage of benign traffic dropped with the solutions
provided by the NSGA-II algorithm.

The problem that needs to be addressed consists in exe-
cuting the Signature Classification on top of the DPU, which
is currently not equipped with a GPU. Five models, Decision
Tree, Linear SVM (λ = 0.0001, δ = 1.0), Logistic Regression,
Naive Bayes and the Artificial Neural Network proposed
in [22] are evaluated on UNSW-NB15 Network Intrusion
Detection dataset using a NVIDIA BlueField-2, equipped with
8 ARMv8 A72 Cortex cores. The ANN model is trained
in TensorFlow and converted in TensorFlow Lite using a
post-training quantization to exploit operations based on 8-
bit integers. Then, it is parsed and executed through the
optimized ArmNN library. The other models are tested using
their MLPack implementation. The dataset is composed by
700000 samples, and a random 20% is assumed as fixed test
set that contains 135564 benign samples and 4437 malignant
samples.

From Fig. 6 it is possible to observe that the Decision

Fig. 6. Time and F1-Score performance of Machine Learning models applied
on UNSW-NB15 Network Intrusion Detection dataset using a NVIDIA
BlueField-2.

Tree model is the best solution for running inference on the
BlueField-2 for each packet, providing the best results in terms
of F1-Score (0.9367) and average inference time (157ns).
Depending on the specific time requirements, ensembling
solutions based on Decision Trees can be adopted, such as
a Random Forest model, to further increase the classification
performance and the robustness of the model. The Neural
Network, even though it is composed only by three fully con-
nected layers and is quantized, is the slowest model, providing
an average inference time equal to 56435 nanoseconds and
a F1-Score equal to 0.8173. The second best model is the
Logistic Regression one, with a F1-Score equal to 0.8190 and
an average inference time equal to 826 nanoseconds. Naive
Bayes (0.8217, 4623ns) and Linear SVM (0.6872, 744ns)
models are not particularly interesting, lacking, respectively,
in average inference time and F1-Score.

CONCLUSIONS

This paper presented three different use cases for edge
scenarios exploiting the recently introduced innovative pro-
grammability enabled by DPUs. The first use case refers to
the setup of a pervasive monitoring infrastructure to sup-
port low-latency 5G services. The second use case focuses
on the potential of implementing a power-efficient edge-
to-cloud continuum through a converged computing-packet-
optical solution. The third use case focuses on implementation
of effective network security functions which also exploit the
embedded DPU computing resources. The performance of five
ML models have been assessed in the context of network
intrusion detection. Results showed that the Decision Tree
model can provide an average inference time of a packet in
only only 157ns with an extremely high F1-Score of 0.9367.
The utilization of DPUs allow for native integration of artificial
intelligence driven operations directly on the network fabric.
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