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Abstract—Distributed Denial of Service (DDoS) is one of the
most common cyber-attacks and caused several damages in recent
years. Such attacks can be executed either through the orches-
tration of multiple devices that synchronously send requests or
through specific patterns followed by a single device to force the
victim to keep resources overrun. It becomes crucial to develop
robust techniques to promptly detect those two kinds of DDoS
attacks and mitigate their consequences. Most of the existing
Machine Learning (ML) methods are based on flow and traffic
information aggregations expressed in the form of independent
vectors of statistical data, ignoring topological connections. Few
recent solutions try to exploit the structural information of the
network to improve the classification results. In particular, Graph
Neural Network (GNN) based models can process traffic-level or
flow-level relationships, represented as graphs, to detect malicious
patterns.

The objective of this paper is to combine the relationships
at both the traffic-level and the flow-level by developing a
two-level hierarchical graph representation and a GNN model
able to process it, maximizing the information brought by the
traffic structure and removing the necessity of stateful features.
Experiments on the CIC-IDS2017 dataset show that the per-
formances are comparable to the state-of-the-art solutions even
using only the traffic structure. The code can be accessed at
https://github.com/lucabarsellotti/FTG-Net.

Index Terms—cybersecurity, DDoS attack detection, machine
learning, graph neural networks.

I. INTRODUCTION

In recent years, with the rise of digital technologies, cyber-
attacks have become increasingly frequent causing various dis-
ruptions with economic, political, military, and privacy-related
damages. According to the FBI’s Internet Crime Complaint
Center (IC3) report [1], 847,376 complaints were reported
in 2021, leading to a 7% increase compared to 2020 and
a 181% increase compared to 2017, with a potential loss
exceeding 6.9$ billion. Distributed Denial of Service (DDoS)
attacks are one of the most common and take advantage
of the capacity limits of a network resource, orchestrating
multiple requests from several devices that congest the access
to the resource for ordinary usage. An example of a DDoS
attack for political reasons is the one received by the public
transportation websites in Israel and the United Kingdom
during Q2 2022 by the ALtahrea Team [2].

There are three main types of DDoS attacks:
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• Volumetric attacks: A botnet attack floods the network
with a massive volume of legitimate traffic that saturates
the bandwidth.

• Protocol attacks: The resources of the servers or the in-
termediate communication equipments, such as firewalls
and load balancers, are consumed by targeting Layer 3
and Layer 4 protocol communications.

• Application attacks: The application layer (Layer 7) is
attacked by legitimate requests that target vulnerabilities
to consume specific resources, such as database queries
or file reads.

An example of a Volumetric Attack is the ICMP Floods
that overwhelms a target device with ICMP echo-requests,
forcing it to respond with an equal number of echo-replies.
Instead, an example of a Protocol Attack is the SYN Floods,
which exploits the TCP handshake mechanism by opening
several connections with SYN packets destined to the server.
It will send SYN/ACK packets until the client responds with
an ACK, that the attacker will never send, or a connection
timeout, uselessly consuming bandwidth. To build a flexible
DDoS Detection System (DDS) able to face the variety of
attacks, it is necessary to observe both the aggregated traffic
between servers and hosts and the specific traffic matching
the communication flow (e.g., protocol, ports) between two
endpoints. The DDS must reach a trade-off between the delay
due to the amount of incoming traffic under analysis (to
provide a sufficient overview to observe possible malicious
patterns) and the reactivity to enforce proper mitigation and
security rules promptly before significant damages. Moreover,
this control mechanism should not overload the computation
capabilities of the network. For example, in [3], the DDS is
completely offloaded to a Data Processing Units (DPU) that
is used to efficiently extract stateful features using hardware
accelerations, classify them and generate mitigation rules
online.

DDSs based on traditional Machine Learning (ML) and
Deep Learning (DL) techniques exploit meaningful either
flow-level or traffic-level features that are statistical aggrega-
tions of the information related to the exchanged packets in
a flow or in a time window, respectively. Those approaches
show good performance when trained on popular Intrusion
Detection System (IDS) datasets, but lack adoption in real-
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world scenarios due to their inability to generalize and be
flexible to different networks and traffic profiles. This problem
can be addressed by replacing the statistical aggregation with
the investigation of the structure of flows, given by sequences
of exchanged packets between two endpoints, and aggregated
traffics, intended as the set of flows established among end-
points in a certain time window. This augmented topological
knowledge provides the possibility to detect common struc-
tural patterns that appear in specific types of DDoS attacks. A
turning point has been reached recently with the application
of Graph Neural Network (GNN) to the DDS problem [4],
leveraging topological information to improve robustness and
detection accuracy. However, it is necessary to analyze the
intra- and inter-entity flow level interactions to completely
capture all the possible attack patterns.

In this paper we propose a novel graph structure Flow-
to-Traffic Graph (FTG) that incorporates both flow-level and
aggregated traffic-level structures in a two-level hierarchical
representation, and a GNN model (FTG-Net) able to process
those fine-to-coarse graphs and classify the flows as legitimate
or malicious. Our approach can represent and embed the struc-
ture of a flow between a host and a server, and combine this
representation with the structure of the whole traffic, fulfilling
the requirement of including each type of DDoS attack in the
possibly recognized patterns. This solution is only based on
the traffic topology and does not require stateful features, that
can be expensive to compute in real-time scenarios and often
overfit the characteristics of a specific training dataset, without
the ability to generalize. When FTG-Net is deployed in real-
world environments, significant stateful features, depending on
the network requirements and capabilities, can be added to
the graph nodes to enrich the representation and improve the
performance.

We summarize the contributions of this paper as follows:
• We convert traffic data into a novel hierarchical graph

structure called FTG that brings information about flows
and aggregated traffics.

• We propose a GNN model, FTG-Net, able to detect DDoS
attacks exploiting the introduced FTG structures.

• We conduct experiments on CIC-IDS2017 [5] to show
that the information contained in the network traffic
structure is sufficient to obtain results comparable with
other state-of-the-art methods.

II. RELATED WORK

Previous works based on traditional ML and DL are focused
on the trade-off between detection performance and introduced
latency due to features collection, processing, and classifica-
tion in a real-time scenario.

Musumeci et al. [6] introduce a Software Defined Network-
ing (SDN) system that offloads part of the DDoS detection in
the data plane without the involvement of the SDN controllers
by combining ML and P4-enabled switch. In particular, the
P4 switches periodically provide stateful traffic information
on a sliding-window basis to the DDoS attack detection
module. The classification outputs are used to communicate to

the switches operator-specific actions to mitigate the attacks.
This approach shows significant latency reduction without
compromising classification performance.

Doriguzzi et al. [7] propose LUCID, a DDoS detection
architecture based on Convolutional Neural Networks (CNN)
that is suitable for online resource-constrained environments.
Network traffic is seen as data flows between endpoints and
each input sample for the CNN is composed of the f features
of packets belonging to the same flow gathered in a time
window t for a maximum of n packets. If a flow is shorter
than n packets, the input sample is zero-padded. The 1D
convolutional kernel, at each iteration, inspects all the features
of h (kernel size) sequential packets.

A significant limitation of traditional ML and DL solutions
is that they analyze and classify flows independently, ignoring
their relationships within the network that are crucial to adapt
the system to detect several DDoS attacks. This problem is
introduced by Pujol Perich et al. [8], that propose the usage
of GNN to address it. In particular, given a set of flows F ,
they build a host-connection graph, in which hosts and flows
are represented as nodes. Given a flow f with source host S
and destination host D, two undirected edges are created: one
between S and f , and one between f and D. The GNN model
is intended to manage the heterogeneity of the introduced
graph structure through different initial hidden states, message
functions, and aggregation functions between host nodes and
flow nodes. Finally, the flow nodes are classified as a specific
attack or benign traffic.

Guo et al. [9] propose GLD-Net to fuse topological structure
and traffic features. Traffic data is divided into time slots and
for each of them a subgraph is built, inserting topology infor-
mation (degree centrality and betweenness centrality) as node
features and flow statistics as edge features. The subgraphs
are processed using Graph Attention Network (GAT) Layers,
which simultaneously analyze traffic and topological features,
and the outputs are interpreted as a time series in input to an
LSTM network.

Li et al. [10] discuss the importance of observing packet
relationships to robustly detect DDoS attacks. Their proposed
solution GraphDDoS exploits endpoint traffic graphs in which
nodes represent packets that belong to the communication
between two endpoints, including multiple flows in the same
graphs. This approach allows catching peculiar patterns that
appear in specific DDoS attacks such as HTTP GET and SYN
Flood attacks. Our flow-level graphs are inspired by the ones
used in GraphDDoS, replacing the N nodes limit with the
introduction of time slots.

In section I we discussed the importance of analyzing
topology from a flow-level and a traffic-level. The usage
of a fine-to-coarse graph structure as input for a GNN has
been exploited by Pati et. al [11] [12] in their HACT-Net,
designed for breast cancer classification. The low-level Cell
Graph is processed by a Cell GNN, and the final node
representations are summed and concatenated in the Tissue
Graph nodes. Finally, the Tissue Graph is processed by a
Tissue GNN to provide predictions. Even if the use case is



completely different from DDoS Detection, this structure fits
the problem. In our solution, Cell Graphs and Tissue Graphs
are, respectively, replaced by Flow Graphs and Traffic Graphs.

III. BACKGROUND

GNN is a Neural Network family introduced by Scarselli et
al. [13] to learn over data structured as graphs. This approach
has shown remarkable performance in many applications that
can be represented using graphs and in which patterns are
significant to solve the problem. The most common architec-
ture is the Message Passing Neural Network (MPNN). Given
a graph G = (V,E), every node v ∈ V is represented
through a hidden state initialized as h0

v (a n-dimensional
vector). For each iteration t of the process, a message-passing
operation is performed, in which the hidden states of the
nodes are combined with the hidden state of their neighbors.
In particular, the message-passing operation is composed of
two functions: an aggregation function a(·) that combines
the received hidden states and an update function u(·) that
combines the current hidden state of the node and the result
of the aggregation.

Formally, the message-passing operation at iteration t is
defined as follows:

mv,w = m(ht
v, h

t
w, ev,w) (1)

M t+1
v = a({mv,w|w ∈ N(v)}) (2)

ht+1
v = u(ht

v,M
t+1
v ) (3)

where ht
v is the hidden state of node v at iteration t, ev,w

is the edge that connects nodes v and w, mv,w is the message
sent by w to v, M t

v is the aggregated message received by v
and N(v) is the neighborhood of v.

After T iterations, it is possible to convert the whole graph
into a single representation vector through a readout phase,
that corresponds to a permutation invariant function applied
to all the hidden states of the nodes:

y = r(hT
v |v ∈ V ) (4)

Kipf and Welling [14] formulate a spectral-based multi-
layer Graph Convolutional Network (GCN) represented by the
following layer-wise propagation rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (5)

where Ã = A+IN is the adjacency matrix of the undirected
graph G with added self-connections, IN is the identity matrix,
D̃ii =

∑
j Ãij , W (l) is a layer-specific trainable weight

matrix, σ(·) denotes an activation function and H(l) ∈ RN×D

is the matrix of activations in the lth layer (starting with
H0 = X , where X is the input signal). This GCN formu-
lation can be interpreted as a differentiable and parameterized
generalization of the 1-dim Weisfeiler-Lehman algorithm on
graphs [15].

IV. GRAPH STRUCTURE

Networking traffic can be considered as hierarchical orga-
nizations of flow entities, ranging from fine-level (packets)
to coarse-level (communications among endpoints). Our pro-
posed graph structure FTG is built from traffic data divided
into time slots of size ts and consists of a high-level Traffic
Graph for each time slot in which each node has a correspond-
ing low-level Flow Graph. Each of the two levels has its own
GNN model to be processed in the FTG-Net.

A. Flow Graph

Flow Graphs are created drawing inspiration from the
graph structure proposed in GraphDDoS [10]. All the packets
exchanged between two endpoints in a time slot form a group,
even if they belong to different networking flows (e.g., TCP
flows). In each group, packets are sorted in ascending order of
time. Each packet is converted into a node that has only the
packet length as a feature. The upstream traffic, from client
to server, is distinguished from the downstream traffic, from
server to client, by setting the length of upstream as positive
and the length of downstream as negative. The packets sent
consecutively by one of the endpoints form a mini-group.
Edges are added to adjacent nodes corresponding to packets
of the same mini-group. The first packet of a mini-group is
connected, using edges, to the first packet of the previous
mini-group and to the one of the subsequent mini-group, as it
happens among the last packets of mini-groups. An example
is shown in Figure 1.
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Fig. 1. Example of a Flow Graph. Upstream packets have positive packet
length features, whereas downstream packets have negative packet length
features. The mini-groups sequence is sorted from left to right.

This structure allows observing packet relationships of a
single flow, that in certain DDoS attacks present a behavior
different from legitimate traffic, and relationships of multiple
flows between the same endpoints, that allow detecting Burst
Information and Periodic Information. Burst Information cor-
responds to the scenario in which the attacker sends a large
number of packets to establish many connections with the
victim on different ports. Periodic Information, instead, refers
to low-rate attacks in which the attacker mimics periodically
a normal client to occupy the resources of the victim as long
as possible.
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Fig. 2. Hierarchical model architecture of the FTG-Net solution.

B. Traffic Graph

A single Traffic Graph is built for each time slot. Each
couple of endpoints that appears at least in a packet from
traffic data of the corresponding time slot is converted in
a graph node, whose features are given by the Flow GNN
output vector that embeds the related low-level Flow Graph.
An edge is added between two nodes when they have the
source IP address or the destination IP address in common.
The set of features that describes the communication between
two endpoints can be enriched by concatenating statistics that
provide further information according to the requirements and
capabilities of a real-world scenario. The objective of this work
is to show that the traffic topology is enough to detect DDoS
attacks with performance in line with state-of-the-art solutions.

The Traffic Graph structure is designed to include and
combine in a single graph, that can be processed by traditional
GNN Layers, interactions among different flows that show the
distribution of devices sending requests to servers, and flow-
specific behaviors that contain malicious attack patterns. How
to encode those flow-level patterns is directly coupled with
the traffic-level topology because, during the training phase,
the weights of the Flow GNN are optimized in the same
backpropagation steps as the weights of the Traffic GNN.

V. MODEL ARCHITECTURE

The architecture of FTG-Net, shown in Figure 2, is designed
to process the multi-level graph representation FTG. It is
divided into three steps. In the first step, traffic data is
converted into FTG structures. In the second step, the Flow-
level Graphs are processed by the Flow GNN producing an
embedded representation vector for each graph. Those vectors
are used as node features in the Traffic-level Graphs, which are
processed in the third step by the Traffic GNN, outputting the

final predictions for each flow (i.e., communication between
two endpoints in a time slot).

A. Traffic Converting

In this step, traffic data is divided into time slots and for
each time slot a Traffic Graph Gt and a list of Flow Graphs
F = {Gf1, Gf2, ..., GfN}, whose indexes correspond to
node indexes in the Traffic Graph and in which N depends
by the time slot, are extracted according to section IV. During
the training phase, a list of labels Y = {y1, y2, ..., yN} (one
label for each Flow Graph) is coupled to each time slot data
to perform supervised learning.

To extract the graphs, traffic data is analyzed in ascending
order according to time. At the beginning of a new time slot,
an empty Traffic Graph is created and an empty sorted list
of encountered couples of endpoints is initialized. For each
packet, if it is the first time that its combination of endpoints
is encountered, then a new node is added to the Traffic Graph
and a new Flow Graph containing only the current packet is
created. During this phase, the direction of the packet is kept
because it will be used to divide the packets into mini-group.
If the combination of endpoints is already present in the list,
then only the corresponding Flow Graph is updated with the
current packet. If its direction is different from the last added
packet, then the mini-group is closed and connected through
edges as explained in section IV-A. At the end of the time slot,
the edges in the Traffic Graph are added according to section
IV-B.

B. Flow GNN

The Flow GNN is used to process Flow Graphs and build
embeddings that will be used as node features in the Traffic
Graph. First, three GCN Layers, defined as described in
section III, are applied to the Flow Graph, spreading node



information in the three-hop neighborhood of each node. Each
GCN Layer is followed by a Rectified Linear Unit (ReLU)
activation function.

Then, a readout function is applied to transform the graph
into a single vector. In particular, the applied readout function
is the global mean pooling, that averages node features across
the node dimension. It is defined as

hG =
1

N

N∑
n=1

h(3)
n (6)

where N is the number of nodes in the Flow Graph and
h
(3)
n is the n-th node feature vector after three iterations of

GCN. The readout output vector is passed to a Fully Connected
Layer, producing the final output.

C. Traffic GNN

The Traffic GNN takes as input a Traffic Graph to output
a prediction (legitimate or malicious traffic) for each node.
It is composed of three GCN Layers followed by a Fully
Connected Layer, with a 50% dropout, that is individually
applied to the features of each node. The single outputs are
passed to a sigmoid activation function that provides the final
scores in the range [0, 1].

VI. EXPERIMENTAL RESULTS

In this section the experimental results are presented to
assess the performance of the proposed FTG-Net model.

A. Experimental Setup

• Running environment: The experiments were run on a
Ubuntu 18.04.5 LTS workstation with Intel Xeon Gold
6244 3.60GHz processor and NVIDIA Tesla v100 32GB
graphics card. The main libraries used to implement FTG-
Net are PyTorch, PyTorch Geometric, NumPy, Scapy and
Pandas.

• Dataset: Our experiments are performed on the Canadian
Institute of Cybersecurity Intrusion Detection System
Dataset (CIC-IDS2017) [5]. It covers common attacks
such as DoS, DDoS, Brute Force, XSS, SQL Injection,
Infiltration, Port Scan and Botnet. The dataset is labelled
with more than 80 traffic features collected using CI-
CFlowMeter. The capturing period started at 09:00 on
Monday and ended at 17:00 on Friday. The DDoS attacks
were performed on Friday afternoon and are the only ones
that are significant for this work. Traffic data have been
converted according to section V-A considering only time
slots with at least 20% of labelled data.

• Evaluation Metrics: The proposed method consists of a
binary classification task, in which indicators are estab-
lished through a confusion matrix and in which it is
possible to formulate the following metrics:

accuracy =
xcorrect

xtotal
=

TP + TN

TP + TN + FP + FN
(7)

recall =
TP

TP + FN
(8)

precision =
TP

TP + FP
(9)

F1 = 2× precision× recall

precision+ recall
(10)

Often, the malignant class is dangerous and recall be-
comes the main metric. However, there are classification
problems in which it is not possible to state that one
class is more important than another one. This is the case
for DDoS Detection, in which legitimate traffic should
not be blocked (also depending on use case) and a few
packets from attacks may not consume all the server
resources. In those scenarios, it is common to combine a
metric computed considering each class as positive and
averaging the results. Weighted F1-Score is a metric in
which F1-Scores are combined by weighted-averaging
using the number of samples of the positive classes as
weights.

B. Results
To evaluate the performance of FTG-Net, we used a 5-

fold cross-validation that randomly divides the dataset into
five chunks and, for each chunk, performs a training phase
considering the current chunk as test set and the others as
training set. We set the time slot size to 5 seconds, a 8-
dimensional vector as output of the Flow GNN and as feature
vector for Traffic Graph nodes, and 64 hidden channels in
output to the GCN Layers. The nodes of the Flow Graphs
are initially composed only by one element, corresponding to
the packet length. The results obtained by combining the best
model for each training phase of the cross-validation can be
seen in table I. They are in line with the other state-of-the-art
results, but with the advantage of considering just the network
structure instead of collecting several stateful features.

TABLE I
COMPARISON OF RESULTS

Method Accuracy F1-score

LUCID 0.9967 0.9966
GLD-Net 0.9940 0.9920

GraphDDoS 0.9959 0.9959

FTG-Net 0.9914 0.9913

In our approach, the time slot size requires to be carefully
configured. A large time slot allows to have a wider view of
the traffic topology, that contains more information to detect
potential DDoS attacks. However, the time slot size is inversely
proportional to the responsiveness of the system, that could
not be enough to promptly detect attacks before damages.
Moreover, with large Traffic Graphs the inference time in-
creases. A small time slot may not carry enough information
to robustly classify traffic. We evaluate the performance in
terms of average inference time and weighted F1-Score of
four different time slot sizes, using a random split that inserts
70% of data in the training set and the remaining 30% in the
test set. The results can be observed in Figure 3 and confirm
the previous reasoning.



Fig. 3. Weighted F1-Score and Average Inference Time results using different time slot sizes.

VII. CONCLUSIONS

In this paper we proposed FTG-Net, composed of a novel
hierarchical traffic representation and a hierarchical Graph
Neural Network model to robustly detect DDoS attacks, lever-
aging topological information at both traffic-level and flow-
level and combining them, which is a necessary process to
capture significant structural patterns. The main advantage of
this approach, compared to solutions that fuse traffic high-level
topology with statistical flow features, is that the Flow GNN
and Traffic GNN architectures are strictly coupled by sharing
the same training phase. We evaluated the performance of this
approach on the CIC-IDS2017 Dataset to prove that traffic
structure is sufficient to obtain results comparable with state-
of-the-art approaches and stateful features can be avoided. The
success of our methodology may inspire the exploration of
different data representations based on the same principles,
considering also resource- and time-constrained real-world
scenarios that may take advantage of distributed and quantized
lightweight solutions.
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