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Abstract. Large-scale pre-trained vision-language models like CLIP
exhibit impressive zero-shot capabilities in classification and retrieval
tasks. However, their application to open-vocabulary semantic segmen-
tation remains challenging due to the gap between the global features
extracted by CLIP for whole-image recognition and the requirement for
semantically detailed pixel-level features. Recent two-stage methods have
attempted to overcome these challenges by generating mask proposals
that are agnostic to specific classes, thereby facilitating the identifica-
tion of regions within images, which are subsequently classified using
CLIP. However, this introduces a significant domain shift between the
masked and cropped proposals and the images on which CLIP was trained.
Fine-tuning CLIP on a limited annotated dataset can alleviate this bias
but may compromise its generalization to unseen classes. In this paper,
we present a method to address the domain shift without relying on
fine-tuning. Our proposed approach utilizes weakly supervised region
prototypes acquired from image-caption pairs. We construct a visual
vocabulary by associating the words in the captions with region proposals
using CLIP embeddings. Then, we cluster these embeddings to obtain
prototypes that embed the same domain shift observed in conventional
two-step methods. During inference, these prototypes can be retrieved
alongside textual prompts. Our region classification incorporates both
textual similarity with the class noun and similarity with prototypes from
our vocabulary. Our experiments show the effectiveness of using retrieval
to enhance vision-language architectures for open-vocabulary semantic
segmentation.
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1 Introduction

Semantic segmentation is a widely studied Computer Vision task, involving the
partitioning of an image into regions that correspond to specific object classes
with semantic meaning. However, obtaining precise annotations for this task
can be costly, hindering scalability to large datasets. In addition, conventional
semantic segmentation models [5,7] are typically trained on a finite set of classes,
making them unable to recognize novel or unexpected objects. To overcome these
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challenges, recent studies have focused on developing open-vocabulary semantic
segmentation models [9,12,22,27] that can recognize a variable number of classes,
including previously unseen or out-of-domain samples. These models offer greater
flexibility and applicability to various real-world scenarios, such as robotics,
autonomous driving, and medical image analysis [4,8].

The growing interest in open-vocabulary semantic segmentation can be at-
tributed to the emergence of large-scale pre-trained vision-language models, such
as CLIP [24] and ALIGN [16]. These models have been trained on billions of
image-text training examples, enabling them to learn rich multi-modal features.
Notably, they exhibit the ability to embed a vast vocabulary and, consequently,
excellent zero-shot capabilities when applied to downstream tasks such as classi-
fication [10,3] and image retrieval. However, transferring this knowledge to dense
prediction tasks presents challenges, as the model must not only identify the
object classes within an image but also precisely localize them.

Two-stage approaches have emerged as effective methods for addressing the
open-vocabulary segmentation task and tackling the localization problem. These
methods involve two stages: first, a mask proposer generates class-agnostic mask
proposals. Then, the image regions corresponding to the generated masks are
extracted, and a CLIP model is used to perform open-vocabulary classification
on each region. Although the class-agnostic proposer demonstrates strong gen-
eralization to arbitrary categories [23], the bottleneck in the performance is
represented by the inability of CLIP in recognizing the masked and cropped
image regions [18]. This limitation stems from the domain shift between the
images provided to CLIP during training and those used in this setup. Resizing,
masking and cropping the object image adversely affect its positioning in the
feature space with respect to text embeddings. However, fine-tuning CLIP on a
closed-vocabulary annotated dataset to compensate for this domain shift may
interfere with its generalization capabilities on unseen classes.

To address the challenge introduced by the domain shift without fine-tuning,
we propose a pre-processing step that involves creating a visual vocabulary that
associates a given word with a series of reference CLIP visual feature embeddings.
These embeddings are generated by collecting region proposals extracted from
an image-caption dataset and by applying a clustering algorithm on top of
them. Thus, the resulting cluster centroids incorporate the same domain shift
while providing a rich variety of visual characteristics of the corresponding word.
Alongside CLIP’s open-vocabulary classification on each region, the vocabulary
visual reference embeddings can be retrieved to augment the segmentation process,
thereby improving its robustness and accuracy.

Our experiments demonstrate the effectiveness of integrating retrieval methods
to enhance the two-stage architecture without the need for further fine-tuning.
The combination of the visual vocabulary reference embeddings and the two-step
segmentation approach yields enhanced performance, highlighting the potential
of utilizing pre-existing knowledge and domain adaptation techniques to address
the domain shift challenge in open-vocabulary segmentation.
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2 Related Works

Semantic Segmentation is a fundamental dense prediction task in Computer
Vision that aims to assign a label to each pixel of an image. The field is primarily
driven by two main lines of research: one that treats it as a pixel-level classification
problem [1,2,5], and another that decouples it into a two-subtask problem [7],
involving the proposal of regions of interest and the subsequent classification of
these proposed regions. Both approaches have shown excellent performance in
closed-vocabulary scenarios under the supervised learning paradigm.

Zero-Shot Semantic Segmentation has gained significant attention in recent
years, driven by the high costs associated with annotating masks for a wide range
of categories. In this setting, models are trained on a set of seen classes and
are then expected to generalize their knowledge to unseen classes. While early
works predominantly relied on discriminative [26] and generative methods [14],
recent advancements have shifted towards the decoupling paradigm [9,28]. These
methods aim to enhance the generalization capabilities of the class-agnostic
mask proposer, enabling it to accurately identify novel objects. Additionally,
they leverage the power of large-scale pre-trained vision-language models to
assign appropriate labels to each region proposal, further improving the overall
performance of zero-shot semantic segmentation. Our proposed method is closely
related to zero-shot semantic segmentation as it harnesses pre-existing knowledge
encoded in the visual vocabulary and employs reference embeddings to enhance
the segmentation performance for previously unseen categories.

Open-Vocabulary Segmentation is a generalized zero-shot learning task that
aims to establish a method for arbitrary recognition of an unlimited number of
object classes, even with the use of additional training data. LSeg [17] aligns
dense per-pixel and textual embeddings in the same semantic space, whereas
OpenSeg [12] and GroupViT [27] propose to group pixels before learning visual-
semantic alignments. Some methods, such as MaskCLIP [30] and PACL [22],
investigate the capability of CLIP itself in producing dense predictions already
aligned with text embeddings. Two-stage approaches have proven remarkable
performance in open-vocabulary segmentation, compensating for the poor lo-
calization ability of CLIP. Their main bottleneck is given by the domain shift
between the masked regions and the images on which CLIP has been trained. To
bridge this gap, ZSSeg [28] proposes a textual prompt-learning approach, whereas
OVSeg [18] exploits the usage of learnable tokens to replace blank areas of the
masked regions. In our proposed method, we tackle the domain shift issue by
constructing a visual vocabulary that aligns with the preprocessing steps applied
to the input images. This alignment effectively incorporates the domain shift and
improves the robustness of the model.

3 Method

Open vocabulary semantic segmentation involves the task of assigning a label
from a set of arbitrary categories to each pixel in an image. In two-stage meth-
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Fig. 1. Overview of our proposed method, VOCSeg, for two-stage open-vocabulary
semantic segmentation enhanced by visual prototype retrieval.

ods [9,18,28], this task is reformulated into dividing the image into coherent
regions and assigning each region a category.

In our proposed open-vocabulary semantic segmentation architecture depicted
in Figure 1, we introduce a novel approach to tackle these challenges. The
architecture comprises three main components: a mask proposer, an enhanced
CLIP model with retrieval capabilities, and a visual vocabulary. The mask
proposer generates region proposals within the image, while the CLIP model
extracts embeddings for these proposed regions. These embeddings serve as
representations for independent open vocabulary classification of each region.
However, it is essential to consider the domain shift introduced by cropping and
masking regions, as it deviates from the training images of CLIP. To mitigate this
domain shift, we introduce the concept of visual prototypes. Firstly, we employ a
two-stage segmentation method on a dataset consisting of image-text pairs to
obtain region proposals for a diverse range of words. These proposals collectively
form the visual vocabulary, which encapsulates the domain shift resulting from
the cropping and masking process. Subsequently, we generate visual prototypes
for each word by clustering the corresponding set of collected regions. These
prototypes serve as representative embeddings within the feature space.

At inference time, we leverage textual category embeddings and retrieved
prototypes for each category. These prototypes reside in the same feature space as
the embeddings and allow us to incorporate both textual and visual similarities
using only the CLIP model, avoiding an increase in computational effort.

3.1 Prototype Extraction from Image-Caption Pairs

Collecting a visual vocabulary. In our approach to open-vocabulary segmen-
tation, it is crucial to utilize prototypes that capture both the distinctive features
of each category and the domain shift resulting from masking the regions. These
prototypes play a pivotal role in classifying the proposed regions by identifying vi-
sually similar correspondences. However, collecting regions for a large vocabulary
represents a challenge, making the use of pre-annotated segmentation datasets in-
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Fig. 2. Overview of the approach for collecting region proposals starting from image-
caption pairs and of the clustering process used to generate prototypes.

feasible due to their limited category coverage. To tackle this challenge, we adopt
a self-labeling strategy for constructing an open-vocabulary collection of regions.
This strategy involves extracting regions from a dataset of image-caption pairs,
associating them with a vocabulary based on their corresponding captions, and
subsequently generating prototypes through the clustering of similar embeddings,
as shown in Figure 2.

Specifically, we extract nouns from each caption, incorporate them into a
text prompt, and provide them as input to the Text Encoder of a CLIP model.
Subsequently, we obtain mask proposal embeddings using the Image Encoder of
the same CLIP model and match the mask proposals with each noun using their
respective computed embeddings. Although this matching process may introduce
some noise, the presence of the noun in the caption ensures that one of the masks
must be related to the corresponding object. Finally, we singularize the extracted
nouns and store the CLIP embeddings of each match in a visual vocabulary.
Generating prototypes. Finally, we perform a k-means clustering on the set of
collected region embeddings for each noun in the vocabulary to generate a set of
prototypes, represented by the cluster centroids. The k-means algorithm groups
similar features, forming representative prototypes for each noun category. In this
way, we ensure that our prototypes capture a wide range of visual characteristics.
Handling rare nouns. There are cases where the number of collected embed-
dings may not be sufficient to perform k-means clustering effectively, either due
to a limited correspondence in the captions or arbitrary test categories that do
not match entries in the visual vocabulary. For these rare nouns, we employ a
k-nearest neighbors algorithm. This algorithm matches the textual embeddings
extracted using CLIP with the most similar words present in the vocabulary. Sub-
sequently, we perform k-means clustering on the embeddings of the N neighbors
to generate prototypes. We increment the value of N until we have an adequate
number of embeddings to perform the k-means clustering effectively.

3.2 Two-Stage Open-Vocabulary with Prototype Retrieval

The objective of two-stage open-vocabulary semantic segmentation is to identify
a pair of mappings (S,L) for an input image I ∈ RH×W×3 across Ctest arbitrary
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categories. In this task, S partitions I into a set P of T regions, defined as follows:

P = {Pi, }Ti=1 with Pi ⊆ I,∪T
i=1Pi = I, ∀i, j : i ̸= j, Pi ∩ Pj = ∅ , (1)

whereas L assigns a category c ∈ Ctest to each region Pi ⊆ I, where i = 1, . . . , T .
Extracting Mask Proposals Embeddings. To obtain class-agnostic mask
proposals, we utilize MaskFormer [7]. This model is trained on a set of classes
Ctrain, nevertheless, as reported by Xu et al. [28], it can generate T high-quality
mask proposals {Mi}Ti=1 and their corresponding mask embeddings, even for
unseen classes. Each mask proposal Mi ∈ RH×W is converted into a binary mask
MB

i ∈ 0, 1H×W by applying a sigmoid function followed by thresholding. The
binary mask indicates the location of the object in the input image.

In the original MaskFormer [7] architecture, the mask embedding is a Ctrain-
dimensional distribution that represents the probability of each training class. To
extend the model to an open-vocabulary setting, inspired by [18,28], we modify
MaskFormer in such a way that each mask generates an F -dimensional embedding,
where F is the embedding dimension of a CLIP model. This adaptation ensures
compatibility between the mask embeddings and the CLIP textual embeddings,
which are extracted from the nouns of various semantic classes, thus enabling
open-vocabulary capabilities. We include an additional F -dimensional learnable
embedding for no-object.

Further, we also employ the CLIP image encoder to extract an additional set
of embeddings from the proposed regions, which complements the ones generated
for each region by MaskFormer. In particular, for each binary mask MB

i , we
erase the unused background, crop around a bounding box, that incorporates
entirely the foreground area, and resize to the input resolution of CLIP. Then,
the region is fed to CLIP to produce an embedding that can be used to compute
similarity against the textual category embeddings.
Assigning proposals to classes. For each category in Ctest, we retrieve a set
of K reference prototype embeddings from a visual vocabulary. To compute the
final similarities between region proposals and categories, we combine two terms:
one which exploits textual category labels and one that exploits the reference
prototype embeddings. In particular, for each category cj ∈ Ctest we extract
an embedding eTj with CLIP using the Textual Encoder, we retrieve a set of
prototypes {ePjk}k=1...K , and for each region Pi we extract an embedding eIi with
the Image Encoder of CLIP and an embedding eMi with MaskFormer. First, we
aggregate the prototype similarities by considering the average of the maximum
similarity with the K prototypes assigned to cj and the mean similarity with all
of them. This is a trade-off between considering the nearest reference embedding
which is the most significant for the current region and the robustness offered by
a single average embedding representative for the whole concept:

sPi,j =
1

2
max

k
sim(eIi , e

P
jk) +

1

2K

K∑
k=1

sim(eIi , e
P
jk), (2)

where i = 1 . . . T , j = 1 . . . |Ctest|, k = 1 . . .K and sim(·, ·) is the cosine similarity.
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Then, since both the prototype similarities and the textual similarities are
computed in the same feature space, we fuse them using a linear combination
with weights α and (1− α). This ensembling strategy rewards the situations in
which the textual and prototype similarities agree, whereas penalizes cases of
disagreement. Formally, the resulting aggregated similarity is defined as

s̃i,j = αsPi,j + (1− α) · sim(eIi , e
T
j ). (3)

The probability vector over classes p̃ is computed through the softmax function
with a temperature τ .
Fusing with MaskFormer predictions. Since MaskFormer is trained on Ctrain,
its performance is biased towards categories belonging to this set. When the object
contained in the region Pi is not recognized as a category of Ctrain, MaskFormer
produces an embedding similar to the no-object embedding. Hence, when the
softmax is applied to its similarities, all the resulting probabilities corresponding
to the categories of Ctest are small, and the one corresponding to no-object is
large, which is removed after the softmax. So, the final prediction of Pi and cj
is obtained through the weighted geometric mean, with weights β and (1− β),
between the probability p̃ of the visual-text branch and the probability p̂ resulting
from MaskFormer, in such a way that the prediction of MaskFormer is enhanced
only when it is confident about it (i.e., when cj belongs to Ctrain too):

pi,j = p̃βi,j · p̂
(1−β)
i,j . (4)

Computing Semantic Segmentation. Finally, mask predictions and proba-
bilities are aggregated to compute the semantic segmentation. Specifically, the
score zj(q) of a category cj ∈ Ctest in a pixel q is computed as the sum of each
mask activation Mi multiplied for the corresponding probability pi,j :

zj(q) =

T∑
i=1

Mi(q)pi,j . (5)

4 Experimental Evaluation

4.1 Datasets

Following Liang et al. [18], we train our MaskFormer backbone on COCO-Stuff [6]
using the all available 171 categories. We conduct experiments on five sets of test
categories, obtained upon three datasets: PASCAL-VOC 2012 [11], ADE20k [29]
(150 and 847 categories), and PASCAL-Context [21] (59 and 459 categories).
COCO-Stuff is an extension of the MS COCO [19] dataset for semantic seg-
mentation. It contains annotations for 171 classes on 118,287 training images
and 5,000 validation images. Due to its high-quality annotations, we use it as
the training dataset for the mask proposer. As reported in [28,18], MaskFormer
trained on a set of seen classes can produce high-quality masks on unseen classes.
PASCAL-VOC 2012 contains annotations for 20 classes on 11,185 training
images and 1,449 validation images. Its classes exhibit significant overlapping
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with COCO-Stuff categories (95% overlap). This overlap makes it interesting to
evaluate performance on known objects sampled from a distribution that differs
from the distribution of the training dataset.
ADE20k is a challenging segmentation dataset containing several indoor and
outdoor scenes. It is partitioned into 20,000 training images, 3,000 test images,
and 2,000 validation images. In the original setting, it contains 150 classes (∼ 45%
overlap with COCO-Stuff), but its full version comprises more than 3,000 classes.
Following [7], we evaluate the performance on the set containing 847 classes.
PASCAL-Context is an extension of the PASCAL-VOC 2010 dataset. It
contains 4,998 training images and 5,005 validation images in two settings, one
with the most frequently used 59 classes (∼ 83% overlap with COCO-Stuff) and
one with the whole 459 classes.

4.2 Experimental Setup

We train the modified MaskFormer model on the COCO-Stuff dataset, according
to [18], with the Swin-B [20] backbone. We follow the original training settings
of MaskFormer [7]. We use the OpenCLIP [15] implementation of CLIP with
ViT-L/14 backbone trained on LAION2B [25]. To embed the category names
with CLIP, we surround them with the text prompts proposed in the original
CLIP [24] and in ViLD [13]. To obtain a diverse set of prototypes, we utilize
COCO Captions [6]. We collect 15,000 unique nouns from the dataset. To extract
binary masks we apply a threshold of 0.4 after the sigmoid.

4.3 Ablation Studies

Masking Strategy. We investigate the impact of three different masking strate-
gies for extracting the regions detected by the mask proposer. In particular,
MaskFormer generates N mask proposals denoted as Mi ∈ RH×W . These pro-
posals indicate the activation level of each position in the image with respect
to the detected region. In our main pipeline, referred to as binary strategy,
we consider the binarized masks {MB

i }Ni=1. In order to isolate the foreground
object and eliminate the potential interference of surrounding context noise on
the open-vocabulary classification of the region through CLIP, we erase the
background information, keeping solely the foreground object. However, we also
acknowledge that in certain cases, the background can provide crucial information
for accurately recognizing the object. To address this, we explore two alternative
strategies: one in which we crop the region without erasing the background (which
we name none), and one, instead, in which we attenuate the background by
multiplying the image pixels with a normalized heatmap derived from the origi-
nally proposed mask (termed heatmap). This allows us to retain some contextual
information while still emphasizing the foreground object of interest.

Our experimental results, as reported in Table 1, demonstrate that the binary
strategy provides the best mIoU scores. We argue that the noise introduced by
the background overwhelms any potential advantage gained from the contextual
information when it comes to clarifying the foreground object.
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Table 1. Ablation on three different mask-
ing strategies, in terms of mIoU score.

Masking Strategy
Dataset None Heatmap Binary

ADE-150 17.7 17.7 22.5
PAS-20 82.51 85.0 93.4

Table 2. Ablation on similarity ensem-
bling, in terms of mIoU score.

Similarity
Dataset Text Visual Ensembling

ADE-150 21.0 20.1 22.5
PAS-20 92.6 93.2 93.4
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Fig. 3. Ablation on different values of the ensembling weight α.

Ensembling. In our method, we introduce the usage of CLIP for both image-to-
text and image-to-image similarities to leverage their benefits concurrently. In
Table 2, we present a comparison between the individual usage of these similarities,
as well as their ensembling. The results show a significant improvement of +1.5
mIoU on the ADE-150 dataset and +0.2 on the PAS-20 dataset compared to the
baseline that considers only visual similarity. We argue that the reason behind
this observed improvement is the complementary nature of the two types of
similarities provided by CLIP. Image-to-text similarity captures the semantic
understanding of the textual information associated with the images, while
image-to-image similarity focuses on the shared visual content between images.

In Figure 3, we present the trend of the mIoU as a function of the ensemble
weight, for both ADE-150 and PAS-20 datasets. Notably, we observe that the
performance trends differ between the two datasets, with ADE-150 performing
better when assigning a larger weight to the text similarity, while PAS-20 performs
better with a larger weight assigned to the visual similarity. We hypothesize that
this discrepancy is influenced by the number of arbitrary categories in (Ctest) and
the quality of the vocabulary employed. Factors such as the number of samples
collected for a specific word, the accuracy of matching region with words, the
distribution of the embeddings in the feature space, and their representativeness
of the semantic concept all play significant roles. These observations emphasize
the need for an adaptation phase specific to the set of arbitrary classes, by tuning
the value of the ensemble weight to obtain the best performance.
Number of Reference Prototypes. Figure 4 illustrates the trend of the mIoU
as the number of clusters k in the k-means algorithm increases. We observe that
the mIoU reaches its peak at k = 10 for both datasets and shows a tendency to
stabilize as k further increases. The variation in mIoU can be attributed to the
frequency of word occurrences in the captions. We theorize that as k increases,
1 OpenSeg uses ALIGN as the pre-trained vision-language model instead of CLIP.
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Table 3. Comparison with other state-of-the-art two-stage models.

Training Frozen Similarity PAS ADE ADE PC PC
Method Dataset CLIP Text Visual 20 150 847 59 459

GroupViT [27] GCC+YFCC ✓ ✓ ✗ 52.3 - - 22.4 -
ZegFormer [9] COCO-Stuff-156 ✓ ✓ ✗ 80.7 16.4 - - -

OpenSeg [16] (R-101) 1 COCO Panoptic ✗ ✓ ✗ 60.0 15.3 4.0 36.9 6.5
ZSSeg [28] (R-101) COCO-Stuff-171 ✗ ✓ ✗ 88.4 20.5 7.0 47.7 -
OVSeg [18] (R-101) COCO-Stuff-171 ✗ ✓ ✗ 89.2 24.8 7.1 53.3 11.0
OVSeg [18] (Swin-B) COCO-Stuff-171 ✗ ✓ ✗ 94.5 29.6 9.0 55.7 12.4

VOCSeg COCO-Stuff-171 ✓ ✓ ✓ 93.4 22.5 8.1 47.3 10.8

0 10 20 30 40 50 60 70 80 90 100
Number of centroids
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Fig. 4. Ablation on the number of clusters used in the k-means algorithm.

the noise incorporated in the reference embeddings also increases. On the other
hand, when using a small value of k, the variety of representations offered by
the vocabulary becomes limited. This limitation hampers the ability to embed
different visual concepts under the same word, leading to decreased performance
in capturing the multitude of nuances in the objects.

4.4 Comparison with state-of-the-art methods

We conduct a comparison with other open-vocabulary architectures based on
a two-stage approach: GroupViT [27], ZegFormer [9], OpenSeg [16], ZSSeg [28]
and OVSeg [18]. The results can be observed in Table 3. The “Similarity” column
highlights the uniqueness of our approach in leveraging the similarities between
image embeddings to bridge the gap between the images used to train CLIP
and the regions extracted in two-stage approaches. Despite introducing a pre-
processing step without additional parameters or fine-tuning CLIP, our method
outperforms ZSSeg, which utilizes learnable tokens in the textual prompts, on
both the ADE-150 and ADE-847 settings by +2 and +1.1 mIoU respectively
and on PAS-20 by 5 mIoU. It also surpasses OpenSeg on all benchmark datasets,
obtaining a +7.2 on ADE-150, +4.1 on ADE-847, +23.4 on PAS-20, +10.4 on
P-59 and +4.3 on P-459. Furthermore, it outperforms OVSeg with a ResNet-101
backbone on ADE-150 by +4.2 and ADE-847 by +1.0. These architectures achieve
high performance through fine-tuning or learnable tokens on a limited set of
annotated segmentation data, which limits their generalization ability. In contrast,
our method provides comparable results while allowing the extension of the visual
vocabulary without compromising the quality of previously collected prototypes.
Moreover, our VOCSeg largely outperforms ZegFormer and GroupViT, which
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operate in the same setting (i.e., without fine-tuning CLIP). Our best performance
is achieved using k = 10 in the k-means algorithm, N = 10 in the k-nearest
neighbors algorithm, α equal to 0.8, 0.35, 0.2, 0.9, and 0.1 on, respectively, PAS-
20, ADE-150, ADE-847, PAS-59 and PAS-459, and β equal to 0.7 on ADE-150
and ADE-847, and 0.6 on PAS-20, PAS-59, and PAS-459.

5 Conclusions

Our solution introduces the concepts of visual vocabulary and visual prototypes.
These prototypes, extracted through clustering techniques, are a collection of
reference embeddings in the vision-language space containing visual features
common to the object they refer to. Through extensive experiments, we have
shown that it is possible to retrieve these prototypes at inference time to enhance
the recognition of the proposed regions without additional learnable parameters
and without fine-tuning the large-scale vision-language model.
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